和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ.有下列结论:
①AD=BE;②AP=BQ;③∠AOB=60°;④DE=DP;⑤△CPQ为正三角形.
其中正确的结论有( )
A.①②③⑤ B.①③④⑤ C.①②⑤ D.②③④
和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ.有下列结论:
①AD=BE;②AP=BQ;③∠AOB=60°;④DE=DP;⑤△CPQ为正三角形.
其中正确的结论有( )
A.①②③⑤ B.①③④⑤ C.①②⑤ D.②③④
A【考点】全等三角形的判定与性质;等边三角形的判定与性质.
【分析】根据等边三角形性质得出AC=BC,DC=CE,∠BCA=∠DCE=60°,求出∠ACD=∠BCE,证△ACD≌△BCE,推出AD=BE,即可判断①;根据全等三角形性质得出∠CBE=∠CAD,根据ASA证△ACP≌△BCQ,推出AP=BQ,即可判断②;对应角相等可得∠CAD=∠CBE,然后证明△ACP与△BCQ全等,根据全等三角形对应角相等可得PC=PQ,从而得到△CPQ是等边三角形,所以⑤正确求出∠DCE=60°=∠CAD+∠ADC,求出∠CAD+∠BEC=60°,即可求出∠AOB=60°,即可判断③;根据三角形外角性质推出∠DPC>∠DCP,推出DP<DC,即可判断④.
【解答】解:∵△ABC和△DCE是正三角形,
∴AC=BC,DC=CE,∠BCA=∠DCE=60°,
∴∠BCA+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中
∴△ACD≌△BCE(SAS),
∴AD=BE,∴①正确;
∵△ACD≌△BCE,
∴∠CBE=∠CAD,
∵∠ACB=∠DCE=60°,
∴∠BCD=60°=∠ACB,
在△ACP和△BCQ中
∴△ACP≌△BCQ(ASA),
∴AP=BQ,∴②正确;
PC=QC,
∴△CPQ为正三角形∴⑤正确
∵△ACD≌△BCE,
∴∠ADC=∠BEC,
∠DCE=60°=∠CAD+∠ADC,
∴∠CAD+∠BEC=60°,
∴∠AOB=∠CAD+∠BEC=60°,∴③正确;
∵△DCE是正三角形,
∴DE=DC,
∵∠AOB=60°,∠DCP=60°,∠DPC>∠AOB,
∴∠DPC>∠DCP,
∴DP<DC,即DP<DE,∴④错误;
所以正确的有①②③⑤,
故选A.