已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC = ∠DEC,延长BE依次交AC于G,交⊙O于H.
(1)求证:AC⊥BH
(2)若∠ABC= 45°,⊙O的直径等于10,BD =8,求CE的长.
已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC = ∠DEC,延长BE依次交AC于G,交⊙O于H.
(1)求证:AC⊥BH
(2)若∠ABC= 45°,⊙O的直径等于10,BD =8,求CE的长.
证明:(1)连结AD (1分)
∵∠DAC = ∠DEC ∠EBC = ∠DEC
∴∠DAC = ∠EBC (2分)
又∵AC是⊙O的直径 ∴∠ADC=90° (3分)
∴∠DCA+∠DAC=90° ∴∠EBC+∠DCA = 90°
∴∠BGC=180°–(∠EBC+∠DCA) = 180°–90°=90°
∴AC⊥BH (5分)
(2)∵∠BDA=180°–∠ADC = 90° ∠ABC = 45° ∴∠BAD = 45°
∴BD = AD
∵BD =8 ∴AD =8 (6分)
又∵∠ADC =90° AC =10
∴由勾股定理 DC== = 6
∴BC=BD+DC=8+6=14 (7分)
又∵∠BGC = ∠ADC =90° ∠BCG =∠ACD
∴△BCG∽△ACD
∴ =
∴ = ∴CG = (8分)
连结AE ∵AC是直径 ∴∠AEC=90° 又因 EG⊥AC
∴ △CEG∽△CAE ∴ = ∴CE2=AC · CG = ´ 10 = 84
∴CE = = 2 (10分)
解析:略