如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.
(1)求证:AC∥DE;
(2)连接AD、CD、OC.填空
①当∠OAC的度数为 时,四边形AOCD为菱形;
②当OA=AE=2时,四边形ACDE的面积为 .
如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.
(1)求证:AC∥DE;
(2)连接AD、CD、OC.填空
①当∠OAC的度数为 时,四边形AOCD为菱形;
②当OA=AE=2时,四边形ACDE的面积为 .
证明:(1)∵F为弦AC的中点,
∴AF=CF,且OF过圆心O
∴FO⊥AC,
∵DE是⊙O切线
∴OD⊥DE
∴DE∥AC
(2)①当∠OAC=30°时,四边形AOCD是菱形,
理由如下:如图,连接CD,AD,OC,
∵∠OAC=30°,OF⊥AC
∴∠AOF=60°
∵AO=DO,∠AOF=60°
∴△ADO是等边三角形
又∵AF⊥DO
∴DF=FO,且AF=CF,
∴四边形AOCD是平行四边形
又∵AO=CO
∴四边形AOCD是菱形
②如图,连接CD,
∵AC∥DE
∴△AFO∽△ODE
∴
∴OD=2OF,DE=2AF
∵AC=2AF
∴DE=AC,且DE∥AC
∴四边形ACDE是平行四边形
∵OA=AE=OD=2
∴OF=DF=1,OE=4
∵在Rt△ODE中,DE==2
∴S四边形ACDE=DE×DF=2×1=2
故答案为:2