如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的

如图,在ABC中,ACB=90°DAB的中点,以DC为直径的OABC的边于GFE点.

1)求证:FBC边的中点;

2)判断四边形BDEF的形状,并说明你的理由;

3)若A=35°,求弧的度数.

答案

【考点】圆的综合题.

【分析】1)连接DF,如图1,根据直角三角形斜边上的中线性质得到BD=AD=CD,再利用圆周角定理得到DFC=90°,然后根据等腰三角形的性质可得BF=FC

2)与(1)一样可得EAC中点,则利用三角形中位线性质得DE=BCDEBC,所以DE=CFDECF,于是可判断四边形BDEF是平行四边形;

2)连接OG,如图2,先利用等腰三角形的性质由CD=AD得到DCA═∠A=35°,则利用三角形外角性质得ODG=70°,再根据等腰三角形的性质和三角形内角和定理得DOG=40°,然后根据圆心角的度数等于它所对弧的度数得到的度数.

【解答】1)证明:连接DF,如图1

∵∠ACB=90°DAB的中点,

BD=AD=CD

CDO的直径,

∴∠DFC=90°

BF=FC

FBC的中点;

2)解:四边形BDEF为平行四边形.理由如下:

与(1)一样可得EAC中点,

DEABC的中位线,

DE=BCDEBC

BF=CF

DE=CFDECF

四边形BDEF是平行四边形;

2)解:连接OG,如图2

CD=AD

∴∠DCA═∠A=35°

∴∠ODG=A+∠DCA=70°

OD=OG

∴∠OGD=ODG=70°

∴∠DOG=180°2×70°=40°

的度数为40°

【点评】本题考查了圆的综合题:熟练掌握圆周角定理、等腰直角三角形的性质、直角三角形斜边上的中线性质和平行四边形的判定方法.充分利用三角形中位线的性质.

相关题目

现有 ①四氧化三铁、 ② 清新的空气、 ③ 铁粉、 ④ 氯酸钾
现有 ①四氧化三铁、 ② 清新的空气、 ③ 铁粉、 ④ 氯酸钾、 ⑤ 液态氧、 ⑥ 水、 ⑦ 氧化钾、 ⑧ 海水等物质,其中属于混合物的是 __________ ,属于
写出下列反应的文字表达式,并在物质名称下面写出它的化
写出下列反应的文字表达式,并在物质名称下面写出它的化学式: ①铁丝在氧气中燃烧 __________________                            ; ②实
_________along the quiet road at forty miles an hour, and then an old man sudden
_________along the quiet road at forty miles an hour, and then an old man suddenly started to cross the road in front of me. A. Driving      B. when I was driving      C. I was driving   
频率不同的两束单色光1和2以相同的入射角从同一点射入一厚
频率不同的两束单色光1和2以相同的入射角从同一点射入一厚玻璃板后,其光路如图所示,下列说法正确的是(    ) A.单色光1的波长小于单色光2的波长 B.
一种商品价格(P)上涨,会引起其替代商品需求量(Q1)需
一种商品价格(P)上涨,会引起其替代商品需求量(Q1)需求量的变化,同时也会引起其互补商品(Q2)需求量的变化。下列曲线图中正确反映它们之间
“闻其声而知其人”主要是根据        来判断的。(选
“闻其声而知其人”主要是根据        来判断的。(选填“音色”、“音调”或“响度”) 
 一小型玩具火箭从地面先匀加速上升,燃料用尽后最终落回
 一小型玩具火箭从地面先匀加速上升,燃料用尽后最终落回地面,其运动的图象如图所示,求:(1)0至2S时段的加速度及3S以后的加速度;(2)火箭离地面
下列词语中,字形和加点字的读音全都正确的一组是     
下列词语中,字形和加点字的读音全都正确的一组是      (    ) A.和诗(hè)   坐镇        怦然心动(pīng)    水火不相融 B.抹黑(mǒ

最新题目