如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.
(Ⅰ)求证:AO⊥BE.
(Ⅱ)求二面角F﹣AE﹣B的余弦值;
(Ⅲ)若BE⊥平面AOC,求a的值.
如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.
(Ⅰ)求证:AO⊥BE.
(Ⅱ)求二面角F﹣AE﹣B的余弦值;
(Ⅲ)若BE⊥平面AOC,求a的值.
【考点】二面角的平面角及求法;直线与平面垂直的判定;直线与平面垂直的性质.
【专题】空间位置关系与距离;空间角.
【分析】(Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE.
(Ⅱ)建立空间坐标系,利用向量法即可求二面角F﹣AE﹣B的余弦值;
(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值
【解答】证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,
∴AO⊥EF,
∵平面AEF⊥平面EFCB,AO⊂平面AEF,
∴AO⊥平面EFCB
∴AO⊥BE.
(Ⅱ)取BC的中点G,连接OG,
∵EFCB是等腰梯形,
∴OG⊥EF,
由(Ⅰ)知AO⊥平面EFCB,
∵OG⊂平面EFCB,∴OA⊥OG,
建立如图的空间坐标系,
则OE=a,BG=2,GH=a,BH=2﹣a,EH=BHtan60°=,
则E(a,0,0),A(0,0,a),B(2,
,0),
=(﹣a,0,
a),
=(a﹣2,﹣
,0),
设平面AEB的法向量为=(x,y,z),
则,即
,
令z=1,则x=,y=﹣1,
即=(
,﹣1,1),
平面AEF的法向量为,
则cos<>=
=
即二面角F﹣AE﹣B的余弦值为;
(Ⅲ)若BE⊥平面AOC,
则BE⊥OC,
即=0,
∵=(a﹣2,﹣
,0),
=(﹣2,
,0),
∴=﹣2(a﹣2)﹣3(a﹣2)2=0,
解得a=.
【点评】本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.