矩形纸片ABCD中,AB=5,AD=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为 ▲ ;
矩形纸片ABCD中,AB=5,AD=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为 ▲ ;
解析:如图所示,设PF⊥CD,
∵BP=FP,
由翻折变换的性质可得BP=B′P,
∴FP=B′P,
∴FP⊥CD,
∴B′,F,P三点构不成三角形,
∴F,B′重合分别延长AE,DC相交于点G,
∵AB平行于CD,
∴∠BAG=∠AGC,
∵∠BAG=∠B′AG,AGC=∠B′AG,
∴GB′=AB′=AB=5,
∵PB′(PF)⊥CD,
∴PB′∥AD,
∴△ADG∽△PB′G,
∵Rt△ADB′中,AB′=5,AD=3,
∴DB′=4,DG=DB′+B′G=4+5=9,
∴△ADG与△PB′G的相似比为9:5,
∴AD:PB′=9:5,
∵AD=3,
∴PB′=,即相等距离为
.