如图,在Rt△OAB中,∠AOB=45°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为 .
如图,在Rt△OAB中,∠AOB=45°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为 .
π .
【考点】扇形面积的计算.
【分析】根据旋转的性质得到AO=CO=2,BO=DO=2,然后根据阴影部分面积=S扇形OBD+S△AOB﹣S扇形OAC﹣S△COD=S扇形OBD﹣S扇形OAC,代入数值即可得到结果.
【解答】解:∵Rt△OAB中,∠AOB=45°,AB=2,
∴AO=2,BO=2,
∵将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,
∴CO=OA=2,DO=OB=2,
∴阴影部分面积=S扇形OBD+S△AOB﹣S扇形OAC﹣S△COD=S扇形OBD﹣S扇形OAC=﹣
=π,
故答案为:π.