如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是 .
如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是 .
【分析】作AH⊥BC于H,交GF于M,如图,先利用三角形面积公式计算出AH=3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,再证明△AGF∽△ABC,则根据相似三角形的性质得
=
,然后解关于x的方程即可.
【解答】解:作AH⊥BC于H,交GF于M,如图,
∵△ABC的面积是6,
∴BC•AH=6,
∴AH==3,
设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,
∵GF∥BC,
∴△AGF∽△ABC,
∴=
,即
=
,解得x=
,
即正方形DEFG的边长为.
故答案为.