如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行 米.
如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行 米.
10
【考点】勾股定理的应用.
【专题】几何图形问题;转化思想.
【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
【解答】解:如图,设大树高为AB=12m,
小树高为CD=6m,
过C点作CE⊥AB于E,则四边形EBDC是矩形,
连接AC,
∴EB=6m,EC=8m,AE=AB﹣EB=12﹣6=6(m),
在Rt△AEC中,
AC==10(m).
故小鸟至少飞行10m.
故答案为:10.
【点评】本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.