设a2+2a-1=0,b4―2b2―1=0,且1-ab2≠0,则=__________.
设a
2+2a-1=0,b
4―2b
2―1=0,且1-ab
2≠0,则

=__________.
1解析:
∵a
2+2a-1=0,b
4-2b
2-1=0∴(a
2+2a-1)-(b
4-2b
2-1)=0
化简之后得到:(a+b
2)(a-b
2+2)=0
若a-b
2+2=0,即b
2=a+2,则1-ab
2=1-a(a+2)=1-a
2-2a=0,与题设矛盾,所以a-b
2+2≠0
因此a+b
2=0,即b
2="-a" ∴

=

=(-1)
2012=1.