设数列{an}满足a1=2,a2+a5=14,且对任意n∈N*,函数f(x)=an+1x2﹣(an+2+an)x满足f′(1)=0.
(1)求数列{an}的通项公式;
(2)设bn=,记数列{bn}的前n项和为Sn,求证Sn<
.
设数列{an}满足a1=2,a2+a5=14,且对任意n∈N*,函数f(x)=an+1x2﹣(an+2+an)x满足f′(1)=0.
(1)求数列{an}的通项公式;
(2)设bn=,记数列{bn}的前n项和为Sn,求证Sn<
.
【考点】数列的求和;数列递推式.
【分析】(1)求出函数的导数,由条件可得2an+1=an+2+an,由等差数列的性质可得数列{an}为等差数列,设公差为d,运用等差数列的通项公式,可得d=2,即可得到通项公式;
(2)由bn==
(
﹣
),运用裂项相消求和,由不等式的性质,即可得证.
【解答】(1)解:函数f(x)=an+1x2﹣(an+2+an)x的导数为f′(x)=2an+1x﹣(an+2+an),
由f′(1)=0,可得2an+1=an+2+an,
由等差数列的性质可得数列{an}为等差数列,设公差为d,
则a1=2,a2+a5=2a1+5d=14,
解得d=2,
即有an=a1+2(n﹣1)=2n.
(2)证明:bn==
=
(
﹣
),
则Sn=(1﹣
+
﹣
+…+
﹣
)
=(1﹣
)<
.
则Sn<.