(1)求{an}的通项公式;
(2)求证:+
+
+…+
<
.
(1)求{an}的通项公式;
(2)求证:+
+
+…+
<
.
(1)解:记Sn=a1+a2+…+an,由题意得n≥2时,an=Sn-1.
由
两式相减得an+1-an=an(n≥2),
∴n≥2时,an+1=2an,即a2,a3,a4,…是以2为公比的等比数列.
∵a1=5,a2=5,∴n≥2时,an=5·2n-2,
即an=
(2)证明:+
+
+…+
=+
+
+…+
=+
[1-(
)n-1]<
+
=
.