如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=( )
A.20° B.60° C.70° D.80°
如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=( )
A.20° B.60° C.70° D.80°
C.【解答】解:∵∠A+∠B+∠ACB=180°,∠A=30°,∠B=70°,
∴∠ACB=80°,
∵CE平分∠ACB,
∴∠BCE=∠ACB=
×80°=40°,
∵CD⊥AB,
∴∠CDB=90°,
∵∠B=70°,
∴∠BCD=90°﹣70°=20°,
∴∠FCD=∠BCE﹣∠BCD=20°,
∵DF⊥CE,
∴∠CFD=90°,
∴∠CDF=90°﹣∠FCD=70°.
故选