已知函数=+有如下性质:如果常数>0,那么该函数在0,上是减函

已知函数有如下性质:如果常数0,那么该函数在0上是减函数,在,+∞上是增函数.

1)如果函数0)的值域为6,+∞,求的值;

2)研究函数(常数0)在定义域内的单调性,并说明理由;

3)对函数(常数0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明)。

答案

解:(1)函数y=x+(x>0)的最小值是2,则2=6, b=log29.

     (2)  0<x1<x2,y2y1=.

 <x1<x2, y2>y1, 函数y=[,+∞)上是增函数;当0<x1<x2<y2<y1, 函数y=(0,]上是减函数.y=是偶函数,于是,该函数在(∞,]上是减函数, [,0)上是增函数;

     (3) 可以把函数推广为y=(常数a>0),其中n是正整数.

        n是奇数时,函数y=(0,]上是减函数,[,+∞) 上是增函数,-

  (∞,]上是增函数, [,0)上是减函数

        n是偶数时,函数y=(0,]上是减函数,[,+∞) 上是增函数,

(∞,]上是减函数, [,0)上是增函数.

相关题目

 (2013·莆田模拟)为解决朝核问题,美国、日本一致认为在北
 (2013·莆田模拟)为解决朝核问题,美国、日本一致认为在北京召开的六方会谈是必要的,这表明(   ) A.中国在国际舞台上的作用越来越重要B.美日在解
某溶液中含有CO32- 、SO42-、Cl- ,若只允许取一次该溶液而把
某溶液中含有CO32- 、SO42-、Cl- ,若只允许取一次该溶液而把三种离子一一检验出来,则:      (1)先检验       ,加入       试剂,离子方程
Towards evening, Jennifer was walking on the beach with a gentle breeze blowing
Towards evening, Jennifer was walking on the beach with a gentle breeze blowing through her hair. Looking up at the golden red sun ball, she was surprised by its color, deep red in the middle, softl
阅读下列材料: 材料一  不结盟国家的国家元首或政府首
阅读下列材料: 材料一  不结盟国家的国家元首或政府首脑注意到,在从以霸权为基础的旧秩序向以各国合作以及建立在自由、平等和促进繁荣的社
When I was growing up, I was embarrassed to be seen with my father. He was seve
When I was growing up, I was embarrassed to be seen with my father. He was severely lame and very short, and when we would walk together, his hand on my arm for balance, people would stare. I would
随着全球环境的恶化,为保护环境,越来越多的人选择过“
随着全球环境的恶化,为保护环境,越来越多的人选择过“低碳生活(low-carbon life)”即减少二氧化碳的排放,低能量,低消耗,低开支的生活。请写
Our brains work in complex and strange ways. There are some people who can calc
Our brains work in complex and strange ways. There are some people who can calculate the day of the week for any given date in 40,000 years, but who cannot add two plus two. Others can perform comp
She was so angry and spoke so fast that none of us understand_____ she said mea
She was so angry and spoke so fast that none of us understand_____ she said meant. A.that    B.what    C.that that    D.what what

最新题目