如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N分别为A1B,B1C1的中点.
(1)求证BC∥平面MNB1;
(2)求证平面A1CB⊥平面ACC1A1.
如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N分别为A1B,B1C1的中点.
(1)求证BC∥平面MNB1;
(2)求证平面A1CB⊥平面ACC1A1.
(本小题满分12分)
如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,
M,N分别为A1B,B1C1的中点.
(1)求证BC∥平面MNB1;
(2)求证平面A1CB⊥平面ACC1A1.
答案:(1)因BC∥B1C1, ………………………………………………………………………2分
且B1C1平面MNB1, …………………………………………………………………………4分
BC平面MNB1,
故BC∥平面MNB1. …………………………………………………………………………6分
(2)因BC⊥AC,且ABC-A1B1C1为直三棱柱, ……………………………………………8分
故BC⊥平面ACC1A1.
因BC平面A1CB, ……………………………………………………………………………10分
故平面A1CB⊥平面ACC1A1. …………………………………………………………………12分
讲评建议:必修2中的立几初步,必须控制难度,注重答题规范.