如图,在中,
,
平分
交
于点
,
为
上一点,经过点
,
的
分别交
,
于点
,
,连接
交
于点
.
(1)求证:是
的切线;
(2)设,
,试用含
的代数式表示线段
的长;
(3)若,
,求
的长.
如图,在中,
,
平分
交
于点
,
为
上一点,经过点
,
的
分别交
,
于点
,
,连接
交
于点
.
(1)求证:是
的切线;
(2)设,
,试用含
的代数式表示线段
的长;
(3)若,
,求
的长.
(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
分析:(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;
(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;
(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.
详解:(1)证明:如图,连接OD,
∵AD为∠BAC的角平分线,
∴∠BAD=∠CAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∴BC为圆O的切线;
(2)连接DF,由(1)知BC为圆O的切线,
∴∠FDC=∠DAF,
∴∠CDA=∠CFD,
∴∠AFD=∠ADB,
∵∠BAD=∠DAF,
∴△ABD∽△ADF,
∴
,即AD2=AB•AF=xy,
则AD=
(3)连接EF,在Rt△BOD中,sinB=,
设圆的半径为r,可得,
解得:r=5,
∴AE=10,AB=18,
∵AE是直径,
∴∠AFE=∠C=90°,
∴EF∥BC,
∴∠AEF=∠B,
∴sin∠AEF=,
∴AF=AE•sin∠AEF=10×,
∵AF∥OD,
∴,即DG=
AD,
∵AD=,
则DG=×
=
.
点睛:此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.