如图,已知直线l与半径为1的⊙D相切于点C,动点P到直线l的距离为d,若
(Ⅰ)求点P的轨迹方程;
(Ⅱ)若轨迹上的点P与同一平面上的点G、M分别满足,
求以P、G、D为项点的三角形的面积.
如图,已知直线l与半径为1的⊙D相切于点C,动点P到直线l的距离为d,若
(Ⅰ)求点P的轨迹方程;
(Ⅱ)若轨迹上的点P与同一平面上的点G、M分别满足,
求以P、G、D为项点的三角形的面积.
解析:(Ⅰ)
∴点P的轨迹是D为焦点,l为相应准线的椭圆.
由
以CD所在直线为x轴,以CD与⊙D的另一个交点O为坐标原点建立直角坐标系.
∴所求点P的轨迹方程为
(说明:其它建系方式相应给分)
(Ⅱ)G为椭圆的左焦点.
又
由题意,(否则P、G、M、D四点共线与已经矛盾)
又∵点P在椭圆上,
又