已知a>0,函数,当x∈[0,
]时,-5≤ f(x)≤1.
(1)求常数a,b的值;
(2)设g(x)=f(x+)且lg[g(x)]>0,求g(x)的单调区间.
已知a>0,函数,当x∈[0,
]时,-5≤ f(x)≤1.
(1)求常数a,b的值;
(2)设g(x)=f(x+)且lg[g(x)]>0,求g(x)的单调区间.
解:(1)∵x∈[0,],
∴2x+∈[
,
],
∴sin(2x+)∈[-
,1],
∴-2asin(2x+
)∈[-2a,a], ∴f(x)∈[b,3a+b],又-5≤f(x)≤1.
∴,解得
.…(5分)
(2)f(x)=-4sin(2x+)-1, g(x)=f(x+
)=-4sin(2x+
)-1=4sin(2x+
)-1,
又由lg[g(x)]>0,得g(x)>1,
∴4sin(2x+)-1>1, ∴sin(2x+
)>
,
∴+2kπ<2x+
<
π+2kπ,k∈Z,
由+2kπ<2x+
≤2kπ+
,得 kπ<x≤kπ+
,k∈Z.
由+2kπ≤2x+
<
π+2kπ得
+kπ≤x<
+kπ,k∈Z.
∴函数g(x)的单调递增区间为(kπ,+kπ](k∈Z),
单调递减区间为[+kπ,
+kπ)(k∈Z)…(12分)