设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(1) 椭圆C的方程为=1,焦点F1(-1,0),F2(1,0);
(2) 为所求的轨迹方程.
(1)椭圆C的焦点在x轴上,由椭圆上的点A到F1、F2两点的距离之和是4,
得2a=4,即a=2.
又点A(1,)在椭圆上,因此
=1得b2=3,于是c2=1.
所以椭圆C的方程为=1,焦点F1(-1,0),F2(1,0)
(2)设椭圆C上的动点为K(x1,y1),线段F1K的中点Q(x,y)满足:
, 即x1=2x+1,y1=2y.
因此=1.即
为所求的轨迹方程.