如图,已知AB是⊙O的直径,点C、D在⊙O上,过D点作PF∥AC交⊙O于F,交AB于点E,∠BPF=∠ADC.
(1)求证:BP是⊙O的切线;
(2)求证:AE•EB=DE•EF;
(3)当⊙O的半径为,AC=2,BE=1时,求BP的长.
如图,已知AB是⊙O的直径,点C、D在⊙O上,过D点作PF∥AC交⊙O于F,交AB于点E,∠BPF=∠ADC.
(1)求证:BP是⊙O的切线;
(2)求证:AE•EB=DE•EF;
(3)当⊙O的半径为,AC=2,BE=1时,求BP的长.
【考点】切线的判定;相似三角形的判定与性质.
【分析】(1)根据圆周角定理得出∠ACB=90°,∠CAB+∠ABC=90°,进而得出∠PEB+∠BPF=90°,从而证得PB是ʘO的切线;
(2)证得△AEF∽△DEB,从而得出=
,即可证得AE•EB=DE•EF;
(3)先根据勾股定理求得BC的长,进而根据△ABC∽△EPB,对应边成比例即可求得BP的长.
【解答】(1)证明:连结BC,
∵AB是ʘO的直径,
∴∠ACB=90°,
∴∠CAB+∠ABC=90°,
又∵∠ABC=∠ADC,∠ADC=∠BPF,
∵PF∥AC,
∴∠CAB=∠PEB,
∴∠PEB+∠BPF=90°,
∴PB⊥AB,
∴PB是ʘO的切线;
(2)连结AF、BD.
在△AEF和△DEB中,
∠AEF=∠DEB.∠AFE=∠DBE,
∴△AEF∽△DEB,
∴=
,即AE•EB=DE•EF;
(3)在Rt△ABC中,BC2=(2)2﹣22
∴BC=4,
在Rt△ABC和Rt△EPB中,
∠ABC=∠ADC=∠BPF,
∴△ABC∽△EPB,
∴=
,
∴BP==2.
【点评】本题考查了切线的判定,三角形相似的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.