已知公差为d(d>1)的等差数列{an}和公比为q(q>1)的等比数列{bn},满足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5},
(1)求通项an,bn;
(2)求数列{an·bn}的前n项和Sn.
已知公差为d(d>1)的等差数列{an}和公比为q(q>1)的等比数列{bn},满足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5},
(1)求通项an,bn;
(2)求数列{an·bn}的前n项和Sn.
(1)∵1,2,3,4,5这5个数中成公差大于1的等差数列的三个数只能是1,3,5;成公比大于1的等比数列的三个数只能是1,2,4.
而{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5},
∴a3=1,a4=3,a5=5,b3=1,b4=2,b5=4,
∴a1=-3,d=2,b1=,q=2,
∴an=a1+(n-1)d=2n-5,bn=b1×qn-1=2n-3.
(2)∵anbn=(2n-5)×2n-3,
∴Sn=(-3)×2-2+(-1)×2-1+1×20+…+(2n-5)×2n-3,
2Sn=-3×2-1+(-1)×20+…+(2n-7)×2n-3+(2n-5)×2n-2,
两式相减得-Sn=(-3)×2-2+2×2-1+2×20+…+2×2n-3-(2n-5)×2n-2=--1+2n-1-(2n-5)×2n-2
∴Sn=+(2n-7)×2n-2.