如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、y=
x相交于点P.
(1)求直线l1的表达式和点P的坐标;
(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒
个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t>0).
①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;
②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.

【解答】解:(1)设直线l1的表达式为y=kx+b
∵直线l1过点F(0,10),E(20,0)
∴
解得
直线l1的表达式为y=﹣
x+10
求直线l1与直线l2 交点,得
x=﹣
x+10
解得x=8
y=
×8=6
∴点P坐标为(8,6)
(2)①如图,当点D在直线上l2时

∵AD=9
∴点D与点A的横坐标之差为9
∴将直线l1与直线l2 交解析式变为
x=20﹣2y,x=
y
∴
y﹣(20﹣2y)=9
解得
y=
则点A的坐标为:(
,
)
则AF=
∵点A速度为每秒
个单位
∴t=
如图,当点B在l2 直线上时

∵AB=6
∴点A的纵坐标比点B的纵坐标高6个单位
∴直线l1的解析式减去直线l2 的解析式得
﹣
x+10﹣
x=6
解得x=
则点A坐标为(
,
)
则AF=
∵点A速度为每秒
个单位
∴t=
故t值为
或
②如图,

设直线AB交l2 于点H
设点A横坐标为a,则点D横坐标为a+9
由①中方法可知:MN=
此时点P到MN距离为:
a+9﹣8=a+1
∵△PMN的面积等于18
∴
解得
a1=
,a2=﹣
(舍去)
∴AF=6﹣
则此时t为
当t=
时,△PMN的面积等于18
【点评】本题是代数几何综合题,应用待定系数法和根据函数关系式来表示点坐标,涉及到了分类讨论思想和数形结合思想.