(1)求证:{an}是等比数列;
(2)若{an}的公比为f(t),数列{bn}满足:b1=1,bn+1=f(),求{bn}的通项公式;
(3)定义数列{cn}为:cn=,求{cn}的前n项和Tn,并求
Tn.
(1)求证:{an}是等比数列;
(2)若{an}的公比为f(t),数列{bn}满足:b1=1,bn+1=f(),求{bn}的通项公式;
(3)定义数列{cn}为:cn=,求{cn}的前n项和Tn,并求
Tn.
解:(1)由T(Sn+1+1)=(2T+1)Sn,
得T(Sn+1)=(2T+1)Sn-1,
相减得=2+
,∴{an}是等比数列.
(2)bn+1=f()=2+bn,
∴bn+1-bn=2,bn=1,得bn=2n-1.
(3)cn==
=(
-
),
∴Tn=[(1-
)+(
-
)+…+(
-
)=
(1-
)].
∴Tn=
.