(1)CD的长度;
(2)AB和棱l所成的角的余弦值.
(1)CD的长度;
(2)AB和棱l所成的角的余弦值.
解:
(1)∵AC⊥l,BD⊥l,α—l—β为60°的二面角,∴〈∵=
+
+
,
∴2=
2+
2+
2+2
+2
+2
.
∴102=22+2+42+2
|
||
|
cos〈
,
〉.
∴2=80-2×2×4×cos120°=88.
∴CD的长度为2.
(2)∵=(
+
+
)
=
+
2+
=
2=88.
∴cos〈,
〉=
=
=
.
点评:
运用向量求线段长,一般是把这条线段“向量化”,通过计算向量的模求得线段长.运用向量求两线段的夹角(或直线夹角),也需要把线段“向量化”,通过计算两向量的数量积与两向量的模的积,再求其商得夹角余弦.