如图在△ABC中,AB=BC,以AB为直径作⊙O交AC于点D,连接OD.
(1)求证:OD∥BC;
(2)过点D作⊙O的切线,交BC于点E,若∠A=30°,求的值.
如图在△ABC中,AB=BC,以AB为直径作⊙O交AC于点D,连接OD.
(1)求证:OD∥BC;
(2)过点D作⊙O的切线,交BC于点E,若∠A=30°,求的值.
解:(1)证明∵AB=BC
∴∠A=∠C
∵OD=OA
∴∠A=∠ADO
∴∠C=∠ADO
∴OD∥BC
(2)如图,连接BD,
∵∠A=30°,∠A=∠C
∴∠C=30°
∵DE为⊙O的切线,
∴DE⊥OD
∵OD∥BC
∴DE⊥BC
∴∠BED=90°
∵AB为⊙O的直径
∴∠BDA=90°,∠CBD=60°
∴=tan∠C=tan30°=
∴BD=CD
∴=cos∠CBD=cos60°=
∴BE=BD=CD
∴=