(1)写出数列{an}的前两项a1,a2;
(2)求数列{an}的通项公式;
(3)证明对任意的整数m>4,有+
+…+
<
.
(1)写出数列{an}的前两项a1,a2;
(2)求数列{an}的通项公式;
(3)证明对任意的整数m>4,有+
+…+
<
.
解:(1)由a1=S1=2a1-1,得a1=1;由a1+a2=S2=2a2+(-1)2,得a2=0.
(2)当n≥2时,有an=Sn-Sn-1=2(an-an-1)+2×(-1)n,
即有an=2an-1+2×(-1)n-1,从而an-1=2an-2+2×(-1)n-2,
an-2=2an-3+2×(-1)n-3,
…
a2=2a1-2.
接下来,逐步迭代就有
an=2n-1a1+2n-1×(-1)+2n-2×(-1)2+…+2×(-1)n-1
=2n-1+(-1)n[(-2)n-1+(-2)n-2+…+(-2)]
=2n-1-(-1)n
=[2n-2+(-1)n-1].
经验证a1也满足上式,故知an=[2n-2+(-1)n-1],n≥1.
(3)证明:由通项公式得a4=2.
当n≥3且n为奇数时,+
=
[
+
]
=×
<
×
=
(
+
).
当m>4且m为偶数时,+
+…+
=+(
+
)+…+(
+
)<
+
(
+
+…+
)
=+
×
×(1
)<
+
=
.
当m>4且m为奇数时,m+1为偶数,可以转化为上面的情景.
+
+…+
<
+
+…+
+
<
,
故任意整数m>4,有+
+…+
<
.