如图,四棱锥中,侧面
是边长为2的正三角形,且与底面垂直,底面
是
的菱形,
为
的中点.
(Ⅰ)求与底面
所成角的大小;
(Ⅱ)求证:平面
;
(Ⅲ)求二面角的余弦值.
![]() |
如图,四棱锥中,侧面
是边长为2的正三角形,且与底面垂直,底面
是
的菱形,
为
的中点.
(Ⅰ)求与底面
所成角的大小;
(Ⅱ)求证:平面
;
(Ⅲ)求二面角的余弦值.
![]() |
解:(I)取DC的中点O,由ΔPDC是正三角形,有PO⊥DC.
又∵平面PDC⊥底面ABCD,∴PO⊥平面ABCD于O.
连结OA,则OA是PA在底面上的射影.∴∠PAO就是PA与底面所成角.
∵∠ADC=60°,由已知ΔPCD和ΔACD是全等的正三角形,从而求得OA=OP=.
∴∠PAO=45°.∴PA与底面ABCD可成角的大小为45°.……………………………4分
(II)由底面ABCD为菱形且∠ADC=60°,DC=2,DO=1,有OA⊥DC.
建立空间直角坐标系如图,………………………………………………………………5分
则,
.
由M为PB中点,∴
.
∴.
∴,
.
∴PA⊥DM,PA⊥DC. ∴PA⊥平面DMC.……………………………8分
(III).令平面BMC的法向量
,
则,从而x+z=0; ……①,
,从而
. ……②
由①、②,取x=−1,则. ∴可取
.……………10分
由(II)知平面CDM的法向量可取,…………………………11分
∴.
∴所求二面角的余弦值为-.…………………………………………………13分
法二:(Ⅰ)方法同上
(Ⅱ)取的中点
,连接
,由(Ⅰ)知,在菱形
中,由于
,则
,又
,则
,即
,
又在中,中位线
,
,则
,则四边形
为
,所以
,在
中,
,则
,故
而
,
则…………………………………………………………8分
(Ⅲ)由(Ⅱ)知,则
为二面角
的平面角,在
中,易得
,
,
故,所求二面角的余弦值为
.…………13分