已知在平面直角坐标系xOy中,椭圆C的方程为,以O为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(1)求直线的直角坐标方程;
(2)设M(x,y)为椭圆C上任意一点,求|x+y﹣1|的最大值.
已知在平面直角坐标系xOy中,椭圆C的方程为,以O为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(1)求直线的直角坐标方程;
(2)设M(x,y)为椭圆C上任意一点,求|x+y﹣1|的最大值.
解:(1)根据题意,椭圆C的方程为+
=1,
则其参数方程为,(α为参数);
直线l的极坐标方程为ρsin(θ+)=3,变形可得ρsinθcos
+ρcosθsin
=3,
即ρsinθ+
ρcosθ=3, ,将x=ρcosθ,y=ρsinθ代入可得
x+y﹣6=0,
即直线l的普通方程为x+y﹣6=0
(2)根据题意,M(x,y)为椭圆一点,则设M(2cosθ,4sinθ),
|2x+y﹣1|=|4
cosθ+4sinθ﹣1|=|8sin(θ+
)﹣1|,
分析可得,当sin(θ+)=﹣1时,|2
x+y﹣1|取得最大值9.