思路
:相交弦定理、割线定理、切割线定理和切线长定理统称为圆幂定理,圆幂定理是圆和相似三角形结合的产物.每条线段的两个端点一个是公共点,另一个是与圆的交点.探究
:相交弦定理、割线定理、切割线定理和切线长定理这几个定理可统一记忆成一个定理:过圆内或圆外一点作圆的两条割线,则这两条割线被圆截出的两弦被定点分(内分或外分)成两线段长的积相等(至于切线可看作是两条交点重合的割线).两条线段的长的积是常数PA·PB=|R2-d2|,其中d为定点P到圆心O的距离.若P在圆内,d<R,则该常数为R2-d2;若P在圆上,d=R,则该常数为0;若P在圆外,d>R,则该常数为d2-R2.使用时注意每条线段的两个端点一个是公共点,另一个是与圆的交点.在实际应用中,见圆中有两条相交弦想到相交弦定理;见到切线与一条割线相交则想到切割线定理;若有两条切线相交则想到切线长定理,并熟悉此时图形中存在着一个以交点和圆心连线为对称轴的对称图形.