已知等差数列{an}满足a1+a2=10,a4-a3=2.
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b2=a3,b3=a7,问:b6与数列{an}的第几项相等?
已知等差数列{an}满足a1+a2=10,a4-a3=2.
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b2=a3,b3=a7,问:b6与数列{an}的第几项相等?
解:(1)设等差数列{an}的公差为d.
因为a4-a3=2,所以d=2.
又因为a1+a2=10,所以2a1+d=10,故a1=4.
所以a4=4+2(n-1)=2n+2 (n=1,2,…).
(2)设等比数列{bn}的公比为q.
因为b2=a3=8,b3=a7=16,
所以q=2,b1=4.
所以b6=4×26-1=128.
由128=2n+2得n=63,
所以b6与数列{an}中的第63项相等.