已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线l不经过第四象限,求k的取值范围.
已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线l不经过第四象限,求k的取值范围.
(1)证明:法一 直线l的方程可化为y=k(x+2)+1,
故无论k取何值,直线l总过定点(-2,1).
法二 设直线过定点(x0,y0),则kx0-y0+1+2k=0对任意k∈R恒成立,即(x0+2)k-y0+1=0恒成立,
所以x0+2=0,-y0+1=0,
解得x0=-2,y0=1,
故直线l总过定点(-2,1).
(2)解:直线l的方程为y=kx+2k+1,
则直线l在y轴上的截距为2k+1,
要使直线l不经过第四象限,
则
解得k≥0.
故k的取值范围为[0,+∞).