(本小题满分13分)如图,在四棱锥中,底面
为
|




平面
,
,
为
中点.
(Ⅰ)证明://平面
;
(Ⅱ)证明:平面
;
(Ⅲ)求直线与平面
所成角的正切值.
(本小题满分13分)如图,在四棱锥中,底面
为
|
平面
,
,
为
中点.
(Ⅰ)证明://平面
;
(Ⅱ)证明:平面
;
(Ⅲ)求直线与平面
所成角的正切值.
本小题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力。满分13分。
(Ⅰ)证明:连接BD,MO,在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点,又M为PD的中点,所以PB//MO。因为平面ACM,
平面ACM,所以PB//平面ACM。
(Ⅱ)证明:因为,且AD=AC=1,所以
,即
,又PO
平面ABCD,
平面ABCD,所以
,所以
平面PAC。
(Ⅲ)解:取DO中点N,连接MN,AN,因为M为PD的中点,所以MN//PO,且平面ABCD,得
平面ABCD,所以
是直线AM与平面ABCD所成的角,在
中,
,所以
,从而
,
在,即直线AM与平面ABCD所成角的正切值为