已知抛物线C: x2= 2 py( p > 0) 的焦点为F , 抛物线上一点A的横坐标为x 1( x1 > 0) ,过点 A 作抛物线C 的切线l1 交x 轴于点D , 交y 轴于点Q ,交直线l ∶y =于点 M,当| FD| = 2 时,∠AF D = 60° .
( Ⅰ) 求证: △AFQ 为等腰三角形, 并求抛物线 C 的方程;
( Ⅱ) 若点 B 位于y 轴左侧的抛物线C 上, 过点B 作抛物线C 的切线l2 交直线l1 于点P , 交直线l 于点 N , 求 △P MN 面积的最小值, 并求取到最小值时的x1 值.