如图,在7×7网格中,每个小正方形边长都为1.建立适当的平面直角坐标系,使点A(3,4)、C(4,2).
(1)判断△ABC的形状,并求图中格点△ABC的面积;
(2)在x轴上有一点P,使得PA+PC最小,则PA+PC的最小值为__________.
如图,在7×7网格中,每个小正方形边长都为1.建立适当的平面直角坐标系,使点A(3,4)、C(4,2).
(1)判断△ABC的形状,并求图中格点△ABC的面积;
(2)在x轴上有一点P,使得PA+PC最小,则PA+PC的最小值为__________.
(1)直角三角形,面积是5(2)
【分析】
(1)首先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标,再利用勾股定理的逆定理即可作出判断,再根据直角三角形的面积公式即可求解;
(2)作点C关于x轴的对称点C′连接AC′交x轴与点P,连接PC,依据轴对称图形的性质可得到PC=PC′,然后依据两点之间线段最短可知当点A,P,C′在一条直线上时,AP+PC有最小值.
【详解】
(1)如图,建立直角坐标系,
∴B的坐标是(0,0).
∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,BC=,AC=
∴S△ABC=BC×AC=
×
×
=5;
(2)如图所示:作点C关于x轴的对称点C′连接AC′交x轴与点P,连接PC.
∵点C与点C′关于x轴对称,
∴PC=PC′.
∴AP+PC=AP+PC.
∴当A,P,C′在一条直线上时,AP+PC有最小值,最小值为AC′的长.
∵AC′=.
∴AP+PC的最小值为.
故答案为:.
【点睛】
本题主要考查的是轴对称路径最短问题、勾股定理的应用,勾股定理的逆定理的应用,明确点A,P,C′在一条直线上时,AP+PC有最小值是解题的关键.