如图所示,在△DEM中,=(0,-8),N在y轴上,且
点E在x轴上移动.
(1)求点M的轨迹方程;
(2)过点F(0,1)作互相垂直的两条直线l1、l2,l1与点M的轨迹交于点A、B,l2与点M的轨迹交于点C、Q,求的最小值.
如图所示,在△DEM中,=(0,-8),N在y轴上,且
点E在x轴上移动.
(1)求点M的轨迹方程;
(2)过点F(0,1)作互相垂直的两条直线l1、l2,l1与点M的轨迹交于点A、B,l2与点M的轨迹交于点C、Q,求的最小值.
(1)设M(x,y),E(a,0),由条件知D(0,-8),
∵N在y轴上且N为EM的中点,∴x=-a,
∵=(-a,-8)·(x-a,y)=-a(x-a)-8y=2x2-8y=0,∴x2=4y(x≠0),
∴点M的轨迹方程为x2=4y(x≠0).
(2)设A(x1,y1),B(x2,y2),C(x3,y3),Q(x4,y4),直线l1:y=kx+1(k≠0),则直线l2:y=-x+1,
由消去y得,x2-4kx-4=0,
∴x1+x2=4k,x1x2=-4,
由消去y得,x2+
x-4=0,
∴x3+x4=-,x3x4=-4.
∵A、B在直线l1上,∴y1=kx1+1,y2=kx2+1,
∵C、Q在直线l2上,∴y3=-x3+1,y4=-
x4+1.
∴=(x3-x1,y3-y1)·(x2-x4,y2-y4)
=(x3-x1)(x2-x4)+(y3-y1)·(y2-y4)
=(x3-x1)(x2-x4)+(-x3-kx1)(kx2+
x4)
=x3x2-x1x2-x3x4+x1x4-x2x3-k2x1x2-x3x4-x1x4
=(-1-k2)x1x2+(-1-)x3x4=4(1+k2)+4(1+
)=8+4(k2+
)≥16等号在k2=
时取得,
即k=±1时成立.∴的最小值为16.