
(1)求证数列{}是等差数列;
(2)若数列{bn}的前n项和Sn=2n-1,记Tn=,求Tn.
(1)求证数列{}是等差数列;
(2)若数列{bn}的前n项和Sn=2n-1,记Tn=,求Tn.
解:(1)由已知得:an+1= ,∴
+3
即=3
∴数列{}是首项为a1=1,公差d=3的等差数列.
(2)由(1)得:∴=1+(n-1)×3=3n-2
即an=(n∈N*).
由Sn=2n-1得bn=2n-1
∴Tn=
=1+4·2+7·22+…+(3n-2)·2n-1
∴2Tn=1·2+4·22+7·23+…+(3n-5)·2n-1+(3n-2)·2n
∴(1-2)Tn=1+3(2+22+23+…+2n-1)-(3n-2)·2n
=1+3(2n-2)-(3n-2)·2n
=-5-(3n-5)·2n
∴Tn=(3n-5)·2n+5.