一个同学在进行多边形的内角和计算时,所得的内角和为1125°,当发现错了以后,重新检测发现少了一个内角,则这个内角是 度.
一个同学在进行多边形的内角和计算时,所得的内角和为1125°,当发现错了以后,重新检测发现少了一个内角,则这个内角是 度.
135 度.
【考点】多边形内角与外角.
【分析】本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形是九边形.
【解答】解:设此多边形的内角和为x,
则有1125°<x<1125°+180°,
即180°×6+45°<x<180°×7+45°,
因为x为多边形的内角和,所以它是180°的倍数,
所以x=180°×7=1260°.
所以7+2=9,1260°﹣1125°=135°.
因此,漏加的这个内角是135°.
故答案为:135°.