已知数列{an}满足an+1=an+2n+1,a1=1,则a5= .
已知数列{an}满足an+1=an+2n+1,a1=1,则a5= .
25 .
【考点】8H:数列递推式.
【分析】an+1=an+2n+1,可得an﹣an﹣1=2(n﹣1)+1.(n≥2).利用累加求和实数即可得出.
【解答】解:∵an+1=an+2n+1,∴an﹣an﹣1=2(n﹣1)+1.(n≥2).
∴an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1
=2(n﹣1)+1+2(n﹣2)+1+…+2+1+1
=2×+n=n2.
则a5=25.