证明
∴2(a4+b4+c4)≥2(a2b2+b2c2+c2a2),
即a4+b4+c4≥a2b2+b2c2+c2a2.
又a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,
c2a2+a2b2≥2a2bc,
∴2(a2b2+b2c2+c2a2)≥2(ab2c+abc2+a2bc),
即a2b2+b2c2+c2a2≥ab2c+abc2+a2bc
=abc(a+b+c).
∴原不等式成立.