F1、F2是双曲线的左、右焦点,P是双曲线上一点,且∠F1PF2=60°,S△PF1F2=12,又离心率为2,求双曲线的方程.
F1、F2是双曲线的左、右焦点,P是双曲线上一点,且∠F1PF2=60°,S△PF1F2=12,又离心率为2,求双曲线的方程.
解 设双曲线方程为=1.
∵|F1F2|=2c,而e==2.
由双曲线定义得||PF1|-|PF2||=2a=c.
由余弦定理得
(2c)2=|PF1|2+|PF2|2-2|PF1||PF2|cos∠F1PF2
=(|PF1|-|PF2|)2+2|PF1||PF2|(1-cos 60°).
∴4c2=c2+|PF1||PF2|.
又∵S△PF1F2=|PF1||PF2|sin 60°=12,
∴|PF1||PF2|=48.
∴3c2=48,c2=16.∴a2=4,b2=12.
∴所求双曲线方程为=1.