如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:
①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是( )
A.①②③ B.①③④ C.①②④ D.②③④
如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:
①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是( )
A.①②③ B.①③④ C.①②④ D.②③④
B【考点】二次函数图象与系数的关系.
【专题】压轴题;数形结合.
【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.
【解答】解:∵抛物线的对称轴是直线x=﹣1,
∴﹣=﹣1,
b=2a,
∴b﹣2a=0,
故①正确;
∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),
∴抛物线和x轴的另一个交点是(﹣4,0),
∴把x=﹣2代入得:y=4a﹣2b+c>0,
故②错误;
∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,
又∵b=2a,
∴c=﹣4a﹣2b=﹣8a,
∴a﹣b+c=a﹣2a﹣8a=﹣9a,
故③正确;
根据图象,可知抛物线对称轴的右边y随x的增大而减小,
∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,
∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),
∵(,y2),1<
,
∴y1>y2,
故④正确;
即正确的有①③④,
故选:B.
【点评】此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.