如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为( )
A.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16
如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为( )
A.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16
C【考点】反比例函数与一次函数的交点问题.
【分析】先根据题意求出A点的坐标,再根据AB=BC=3,AB、BC分别平行于x轴、y轴求出B、C两点的坐标,再根据双曲线y=(k≠0)分别经过A、C两点时k的取值范围即可.
【解答】解:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),
∵AB=BC=3,
∴C点的坐标是(4,4),
∴当双曲线y=经过点(1,1)时,k=1;
当双曲线y=经过点(4,4)时,k=16,
因而1≤k≤16.