如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重

如图,点CABD的外接圆上的一动点(点C不在上,且不与点BD重合),ACB=ABD=45°                   

1)求证:BD是该外接圆的直径;                                                       

2)连结CD,求证: AC=BC+CD                                                

3)若ABC关于直线AB的对称图形为ABM,连接DM,试探究DM2AM2BM2三者之间满足的等量关系,并证明你的结论.                                                                                        

                                                                          

答案

解:(1=                                                                        

∴∠ACB=ADB=45°                                                                           

∵∠ABD=45°                                                                                 

∴∠BAD=90°                                                                                 

BDABD外接圆的直径;                                                               

                                                                                                          

2)在CD的延长线上截取DE=BC                                                     

连接EA                                                                                          

∵∠ABD=ADB                                                                            

AB=AD                                                                                        

∵∠ADE+ADC=180°                                                                         

ABC+ADC=180°                                                                       

∴∠ABC=ADE                                                                            

ABCADE中,                                                                           

                                                                             

∴△ABC≌△ADESAS),                                                                   

∴∠BAC=DAE                                                                            

∴∠BAC+CAD=DAE+CAD                                                         

∴∠BAD=CAE=90°                                                                           

=                                                                                           

∴∠ACD=ABD=45°                                                                          

∴△CAE是等腰直角三角形,                                                                 

AC=CE                                                                                   

AC=CD+DE=CD+BC                                                                    

                                                                                                          

3)过点MMFMB于点M,过点AAFMA于点AMFAF交于点F,连接BF                  

由对称性可知:AMB=ACB=45°                                                         

∴∠FMA=45°                                                                                 

∴△AMF是等腰直角三角形,                                                                 

AM=AFMF=AM                                                                        

∵∠MAF+MAB=BAD+MAB                                                        

∴∠FAB=MAD                                                                            

ABFADM中,                                                                           

                                                                             

∴△ABF≌△ADMSAS),                                                                  

BF=DM                                                                                       

RtBMF中,                                                                                

BM2+MF2=BF2                                                                             

BM2+2AM2=DM2                                                                         

                                                        

                                                              

【点评】本题考查圆的综合问题,涉及圆周角定理,等腰三角形的性质,全等三角形的性质与判定,勾股定理等知识,综合程度较高,解决本题的关键就是构造等腰直角三角形.                               

                                                                                                       

相关题目

 如图35所示,一根长 L = 1.5m 的光滑绝缘细直杆MN ,竖直固定
 如图35所示,一根长 L = 1.5m 的光滑绝缘细直杆MN ,竖直固定在场强为 E ==1.0 ×105N / C 、与水平方向成θ=300角的倾斜向上的匀强电场中。杆的下端M固定
Throughout the world__________advance has been made in science and technology is
Throughout the world__________advance has been made in science and technology is due to education which brings forth knowledge, creation and inventions.  A. whoever          B. whatever  
在探究“影响摩擦力大小的因素”实验中,同学们猜想摩擦
在探究“影响摩擦力大小的因素”实验中,同学们猜想摩擦力的大小可能与以下因素有关:①接触面所受的压力;②接触面的粗糙程度;③接触面积的
下列有关文学常识的表述,有错误的一项是(     ) A.王
下列有关文学常识的表述,有错误的一项是(     ) A.王维,字摩诘,与孟浩然同为盛唐边塞诗派代表,其作品被苏轼赞为“诗中有画,画中有诗”
某校要从高一、高二、高三共2 012名学生中选取50名组成志愿
某校要从高一、高二、高三共2 012名学生中选取50名组成志愿团,若采用下面的方法选取,先用简单随机抽样的方法从2 012人中剔除12人,剩下的2 000人再
⑴15.6 g Na2X含Na+ 0.4mol,则Na2X的摩尔质量为       ,X的相
⑴15.6 g Na2X含Na+ 0.4mol,则Na2X的摩尔质量为       ,X的相对原子质量为                  ⑵质量分数为36.5%的盐酸密度为1.19g/ml,它的物质的
从“充分条件”“必要条件”中选出适当的一种填空:(1)
从“充分条件”“必要条件”中选出适当的一种填空:(1)“ax2+bx+c=0(a≠0)有实根”是“ac<0”的________;(2)“△ABC≌△A′B′C′”是“△ABC∽△A′B′C
1It was a nice house, but _______ too small for a family of live. A. rarely  
1It was a nice house, but _______ too small for a family of live. A. rarely       B. fairly      C. rather        D. pretty

最新题目