如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重

如图,点CABD的外接圆上的一动点(点C不在上,且不与点BD重合),ACB=ABD=45°                   

1)求证:BD是该外接圆的直径;                                                       

2)连结CD,求证: AC=BC+CD                                                

3)若ABC关于直线AB的对称图形为ABM,连接DM,试探究DM2AM2BM2三者之间满足的等量关系,并证明你的结论.                                                                                        

                                                                          

答案

解:(1=                                                                        

∴∠ACB=ADB=45°                                                                           

∵∠ABD=45°                                                                                 

∴∠BAD=90°                                                                                 

BDABD外接圆的直径;                                                               

                                                                                                          

2)在CD的延长线上截取DE=BC                                                     

连接EA                                                                                          

∵∠ABD=ADB                                                                            

AB=AD                                                                                        

∵∠ADE+ADC=180°                                                                         

ABC+ADC=180°                                                                       

∴∠ABC=ADE                                                                            

ABCADE中,                                                                           

                                                                             

∴△ABC≌△ADESAS),                                                                   

∴∠BAC=DAE                                                                            

∴∠BAC+CAD=DAE+CAD                                                         

∴∠BAD=CAE=90°                                                                           

=                                                                                           

∴∠ACD=ABD=45°                                                                          

∴△CAE是等腰直角三角形,                                                                 

AC=CE                                                                                   

AC=CD+DE=CD+BC                                                                    

                                                                                                          

3)过点MMFMB于点M,过点AAFMA于点AMFAF交于点F,连接BF                  

由对称性可知:AMB=ACB=45°                                                         

∴∠FMA=45°                                                                                 

∴△AMF是等腰直角三角形,                                                                 

AM=AFMF=AM                                                                        

∵∠MAF+MAB=BAD+MAB                                                        

∴∠FAB=MAD                                                                            

ABFADM中,                                                                           

                                                                             

∴△ABF≌△ADMSAS),                                                                  

BF=DM                                                                                       

RtBMF中,                                                                                

BM2+MF2=BF2                                                                             

BM2+2AM2=DM2                                                                         

                                                        

                                                              

【点评】本题考查圆的综合问题,涉及圆周角定理,等腰三角形的性质,全等三角形的性质与判定,勾股定理等知识,综合程度较高,解决本题的关键就是构造等腰直角三角形.                               

                                                                                                       

相关题目

(6分)在共点力合成的实验中,根据实验数据画出图示,如
(6分)在共点力合成的实验中,根据实验数据画出图示,如图,图上标出了F1、F2、F、F′四个力,其中___(填上述字母)不是由弹簧秤直接测得的
用边长为1cm的小正方形搭如图所示的塔状图形:第1次图形的
用边长为1cm的小正方形搭如图所示的塔状图形:第1次图形的周长为4cm;第2次图形的周长为8cm ,按照这种方式搭下去,请你仔细思考,完成下列表格. 第1
常温下,下列物质的水溶液的PH大于7的是A. Na2CO3  B. Na2SO4  
常温下,下列物质的水溶液的PH大于7的是A. Na2CO3  B. Na2SO4    C. NH4Cl   D. KCl 
已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的
已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”,如图18分别是当a=-1,a=0,a=l,a=2时二次函数
一位心理学家说:“一个人所发挥的能力,只占他全部能力
一位心理学家说:“一个人所发挥的能力,只占他全部能力的4%。”这告诉我们(   )A.人是非常渺小的B.人的潜能是有待开发的巨大宝库C.人的能
下列有关文学常识的表述,不正确的一项是A 19世纪法国批判现
下列有关文学常识的表述,不正确的一项是A 19世纪法国批判现实主义的杰出代表巴尔扎克,一生创作了九十多部小说,这些小说的合集《人间喜剧》的命名
二氯化二硫(S2C12)在工业上用于橡胶的硫化。为了在实验室
二氯化二硫(S2C12)在工业上用于橡胶的硫化。为了在实验室合成S2C12,某化学研究性学习小组查阅了有关资料,得到如下信息: ①在110℃ ~ 140℃时,
如图所示,一艘炮艇沿长江由西向东快速行驶,在炮艇上发
如图所示,一艘炮艇沿长江由西向东快速行驶,在炮艇上发射炮弹射击北岸的目标。要击中目标,射击方向应    (   )       A. 偏向目标的西侧

最新题目