如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重

如图,点CABD的外接圆上的一动点(点C不在上,且不与点BD重合),ACB=ABD=45°                   

1)求证:BD是该外接圆的直径;                                                       

2)连结CD,求证: AC=BC+CD                                                

3)若ABC关于直线AB的对称图形为ABM,连接DM,试探究DM2AM2BM2三者之间满足的等量关系,并证明你的结论.                                                                                        

                                                                          

答案

解:(1=                                                                        

∴∠ACB=ADB=45°                                                                           

∵∠ABD=45°                                                                                 

∴∠BAD=90°                                                                                 

BDABD外接圆的直径;                                                               

                                                                                                          

2)在CD的延长线上截取DE=BC                                                     

连接EA                                                                                          

∵∠ABD=ADB                                                                            

AB=AD                                                                                        

∵∠ADE+ADC=180°                                                                         

ABC+ADC=180°                                                                       

∴∠ABC=ADE                                                                            

ABCADE中,                                                                           

                                                                             

∴△ABC≌△ADESAS),                                                                   

∴∠BAC=DAE                                                                            

∴∠BAC+CAD=DAE+CAD                                                         

∴∠BAD=CAE=90°                                                                           

=                                                                                           

∴∠ACD=ABD=45°                                                                          

∴△CAE是等腰直角三角形,                                                                 

AC=CE                                                                                   

AC=CD+DE=CD+BC                                                                    

                                                                                                          

3)过点MMFMB于点M,过点AAFMA于点AMFAF交于点F,连接BF                  

由对称性可知:AMB=ACB=45°                                                         

∴∠FMA=45°                                                                                 

∴△AMF是等腰直角三角形,                                                                 

AM=AFMF=AM                                                                        

∵∠MAF+MAB=BAD+MAB                                                        

∴∠FAB=MAD                                                                            

ABFADM中,                                                                           

                                                                             

∴△ABF≌△ADMSAS),                                                                  

BF=DM                                                                                       

RtBMF中,                                                                                

BM2+MF2=BF2                                                                             

BM2+2AM2=DM2                                                                         

                                                        

                                                              

【点评】本题考查圆的综合问题,涉及圆周角定理,等腰三角形的性质,全等三角形的性质与判定,勾股定理等知识,综合程度较高,解决本题的关键就是构造等腰直角三角形.                               

                                                                                                       

相关题目

第二节  写作:(满分25分) 假如你叫张华,今年高三毕业
第二节  写作:(满分25分) 假如你叫张华,今年高三毕业。下面四幅图描述了你在暑假期间遇到了同学李明,绰号叫淘淘皮。你们谈起了暑假的计划
组成物质的分子之间存在相互作用的        力和斥力。
组成物质的分子之间存在相互作用的        力和斥力。
“凤阳地多不打粮,磙子一住就逃荒。只见凤阳女出嫁,不
“凤阳地多不打粮,磙子一住就逃荒。只见凤阳女出嫁,不见新娘进凤阳。”“1979年安徽凤阳全县粮食产量比1978年增长49%,卖给国家粮食4450万千克。
已知函数y=tan(2x+φ)的图象过点(,0),则φ可以是(    )A.-   
已知函数y=tan(2x+φ)的图象过点(,0),则φ可以是(    )A.-                B.                C.-                D.
“换位思考,与人为善”的实质在于A.团结友爱、做事公正B
“换位思考,与人为善”的实质在于A.团结友爱、做事公正B.宽容他人、迁就自我 C.想人所想、理解至上D.严以待人、宽以待己  
据报载,由中国科学院完成的世界上首例异品种克隆亚洲黄
据报载,由中国科学院完成的世界上首例异品种克隆亚洲黄羊项目通过了专家鉴定。据说,用普通山羊完成体细胞克隆亚洲黄羊,此前在国际上还没有
如图,是用火柴棒拼成的图形,则第n个图形需       根火
如图,是用火柴棒拼成的图形,则第n个图形需       根火柴棒.
阅读下面这首宋诗,完成文后各小题。 南 征 杜甫 春岸桃花
阅读下面这首宋诗,完成文后各小题。 南 征 杜甫 春岸桃花水,云帆枫树林。 偷生长避地,适远更沾襟。 老病南征日,君恩北望心。 百年歌自苦,未

最新题目