已知△ABC的内角B满足2cos 2B-8cos B+5=0,若=a,
=b且a,b满足:a·b=-9,|a|=3,|b|=5,θ为a,b的夹角.
(1)求角B;
(2)求sin(B+θ).
已知△ABC的内角B满足2cos 2B-8cos B+5=0,若=a,
=b且a,b满足:a·b=-9,|a|=3,|b|=5,θ为a,b的夹角.
(1)求角B;
(2)求sin(B+θ).
解 (1)2(2cos2B-1)-8cos B+5=0,即4cos2B-8cos B+3=0,得cos B=.
又B为△ABC的内角,∴B=60°.
(2)∵cos θ==-
,∴sin θ=
.∴sin(B+θ)=sin Bcos θ+cos Bsin θ=