(1)设x≥1,y≥1,证明:x+y+
≤
+
+xy;
(2)设1<a≤b≤c,证明:logab+logbc+logca≤logba+logcb+logac.
(1)设x≥1,y≥1,证明:x+y+
≤
+
+xy;
(2)设1<a≤b≤c,证明:logab+logbc+logca≤logba+logcb+logac.
证明 (1)由于x≥1,y≥1,所以x+y+
≤
+
+xy⇔xy(x+y)+1≤y+x+(xy)2.
所以[y+x+(xy)2]-[xy(x+y)+1]
=[(xy)2-1]-[xy(x+y)-(x+y)]
=(xy+1)(xy-1)-(x+y)(xy-1)
=(xy-1)(xy-x-y+1)
=(xy-1)(x-1)(y-1).
既然x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.
(2)设logab=x,logbc=y,由对数的换底公式,得
logca=
,logba=
,logcb=
,logac=xy.
于是,所要证明的不等式即为x+y+
≤
+
+xy,其中x=logab≥1,y=logbc≥1.
故由(1)可知所要证明的不等式成立.