(1)证明数列{an+1}是等比数列;
(2)令f(x)=a1x+a2x2+…+anxn,求函数f(x)在点x=1处的导数f′(1),并比较2f′(1)与23n2-13n的大小.
(1)证明数列{an+1}是等比数列;
(2)令f(x)=a1x+a2x2+…+anxn,求函数f(x)在点x=1处的导数f′(1),并比较2f′(1)与23n2-13n的大小.
解:(1)由已知Sn+1=2Sn+n+5,
∴n≥2时,Sn=2Sn-1+n+4.
两式相减,得Sn+1-Sn=2(Sn-Sn-1)+1,
即an+1=2an+1,
从而an+1+1=2(an+1).
当n=1时,S2=2S1+1+5,
∴a1+a2=2a1+6.
又a1=5,∴a2=11.
从而a2+1=2(a1+1).
故总有an+1+1=2(an+1),n∈N*.
又∵a1=5,∴an+1≠0.
从而=2,即{an+1}是以a1+1=6为首项,2为公比的等比数列.
(2)由(1)知an=3×2n-1.
∵f(x)=a1x+a2x2+…+anxn,
∴f′(x)=a1+2a2x+…+nanxn-1.
从而f′(1)=a1+2a2+…+nan
=(3×2-1)+2(3×22-1)+…+n(3×2n-1)
=3(2+2×22+…+n×2n)-(1+2+…+n)
=3[n×2n+1-(2+…+2n)]-
=3[n×2n+1-2n+1+2]-
=3(n-1)·2n+1-+6.
由上2f′(1)-(23n2-13n)
=12(n-1)·2n-12(2n2-n-1)
=12(n-1)·2n-12(n-1)(2n+1)
=12(n-1)[2n-(2n+1)]. (*)
当n=1时,(*)式=0,
∴2f′(1)=23n2-13n;
当n=2时,(*)式=-12<0,∴2f′(1)<23n2-13n;
当n≥3时,n-1>0.
又2n=(1+1)2=+
+…+
+
≥2n+2>2n+1,
∴(n-1)[2n-(2n+1)]>0,
即(*)式>0,
从而2f′(1)>23n2-13n.