(1)求证:平面A1EF⊥平面B1BCC1;
(2)求直线AA1到平面B1BCC1的距离;
(3)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等?
(1)求证:平面A1EF⊥平面B1BCC1;
(2)求直线AA1到平面B1BCC1的距离;
(3)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等?
∴CC1⊥平面A1EF,∴平面A1EF⊥平面B1BCC1.
(2)作A1H⊥EF于H,则A1H⊥面B1BCC1,∴A1H为A1到面B1BCC1的距离.在△A1EF中,A1E=A1F=2,EF=2,∴△A1EF为等腰直角三角形且EF为斜边,∴A1H为斜边上中线,可得A1H=EF=1.
(3)作A1G⊥面ABC于G,连结AG,则A1G就是A1到面ABC的距离,且AG是∠BAC的角平分线,A1G=1.
∵cos∠A1AG=.∴sin∠A1AG=
.∴A1A=