已知正项数列{an}满足an2+an=3a2n+1+2an+1,a1=1. (1)求a2的值; (2)证

已知正项数列{an}满足an2+an=3a2n+1+2an+1,a1=1.

(1)求a2的值;

(2)证明:对任意实数nN*,an≤2an+1

(3)记数列{an}的前n项和为Sn,证明:对任意nN*,2﹣≤Sn<3.

答案

【考点】数列的求和;数列递推式.

【专题】等差数列与等比数列;不等式的解法及应用.

【分析】(1)由代入法,解方程可得a2,注意负值舍去;

(2)由题意可得可得an2﹣4a2n+1+an﹣2an+1+4a2n+1=0,因式分解,即可得证;

(3)运用(2)的结论,结合等比数列的求和公式和不等式的性质,即可得证.

【解答】解:(1)an2+an=3a2n+1+2an+1,a1=1,

即有a12+a1=3a22+2a2=2,

解得a2=(负的舍去);

(2)证明:an2+an=3a2n+1+2an+1

可得an2﹣4a2n+1+an﹣2an+1+4a2n+1=0,

即有(an﹣2an+1)(an+2an+1+1)+4a2n+1=0,

由于正项数列{an},

即有an+2an+1+1>0,4a2n+1>0,

则有对任意实数nN*,an≤2an+1

(3)由(1)可得对任意实数nN*,an≤2an+1

即为a1≤2a2,可得a2,a3a2

…,an

前n项和为Sn=a1+a2+…+an≥1+++…+

==2﹣

又an2+an=3a2n+1+2an+1>a2n+1+an+1

即有(an﹣an+1)(an+an+1+1)>0,

则an>an+1,数列{an}递减,

即有Sn=a1+a2+…+an<1+1+++…+

=1+=3(1﹣)<3.

则有对任意nN*,2﹣≤Sn<3.

【点评】本题考查数列的通项和求和间的关系,考查数列不等式的证明,同时考查等比数列的求和公式的运用,以及不等式的性质,属于中档题.

相关题目

目前生态城市是现代城市建设的新潮流,它以环境为中心,
目前生态城市是现代城市建设的新潮流,它以环境为中心,注重可持续发展,强调资源的高效低耗和生态优先等原则。据此回答问题。 生态城市中心区
几个做匀变速直线运动的物体,在时间t内 内位移最大的是(
几个做匀变速直线运动的物体,在时间t内 内位移最大的是(    )A.加速度最大的物体  B.初速度最大的物体 C.末速度最大的物体 D.平均速度最大的物
The old lady died from the _____on her head; she was _______when cleaning window
The old lady died from the _____on her head; she was _______when cleaning windows on the ladder when she fell off it. A. injury; injured   B. wound; wound  C. wounded; hurt   D. hurt; injured
康乐公司在两地分别有同型号的机器台和台,现要运往甲地
康乐公司在两地分别有同型号的机器台和台,现要运往甲地台,乙地台,从两地运往甲、乙两地的费用如下表:甲地(元/台)乙地(元/台) 地 地
--- How often do you eat out? --- __, but usually once a week.      A.Ha
--- How often do you eat out? --- __, but usually once a week.      A.Have no idea                                        B.It depends        
下列说法正确的是A.一个盛有一定质量气体的密闭容器,当容
下列说法正确的是A.一个盛有一定质量气体的密闭容器,当容器做自由落体运动处于完全失重状态时,气体对容器底部的压力为零B.对于一定种类的大量
 右图中电极a、b分别为Ag电极和Pt电极,电极c、d都是石墨电
 右图中电极a、b分别为Ag电极和Pt电极,电极c、d都是石墨电极。通电一段时间后,在c、d两极上共收集到336mL(标准状态)气体。回答:(1)直流电源
如果变阻器两端电压不变,那么通过变阻器的电流y与电阻x的
如果变阻器两端电压不变,那么通过变阻器的电流y与电阻x的函数关系图像大致是(     ) A           B               C           

最新题目