(06年四川卷)(12分)
某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”。甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9。所有考核是否合格相互之间没有影响。
(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;
(Ⅱ)求这三人该课程考核都合格的概率(结果保留三位小数)。
(06年四川卷)(12分)
某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”。甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9。所有考核是否合格相互之间没有影响。
(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;
(Ⅱ)求这三人该课程考核都合格的概率(结果保留三位小数)。
本小题主要考察相互独立事件、互斥事件、对立事件等概率的计算方法,考察应用概率知识解决实际问题的能力。
解析:记“甲理论考核合格”为事件,“乙理论考核合格”为事件
,“丙理论考核合格”为事件
, 记
为
的对立事件,
;记“甲实验考核合格”为事件
,“乙实验考核合格”为事件
,“丙实验考核合格”为事件
,
(Ⅰ)记“理论考核中至少有两人合格”为事件,记
为
的对立事件
解法1:
解法2:
所以,理论考核中至少有两人合格的概率为
(Ⅱ)记“三人该课程考核都合格” 为事件
所以,这三人该课程考核都合格的概率为