(1)证明:ED为异面直线BB1与AC1的公垂线;
(2)设AA1=AC=AB,求二面角A1—AD—C1的大小.
(1)证明:ED为异面直线BB1与AC1的公垂线;
(2)设AA1=AC=AB,求二面角A1—AD—C1的大小.
(1)证明:如图,建立直角坐标系O—xyz,其中原点O为AC的中点
设A(a,0,0),B(0,b,0),B1(0,b,2c),
则C(-a,0,0)、C1(-a,0,2c)、E(0,0,c)、D(0,b,c).
C·
又
∴ED是异面直线BB1与AC1的公垂线.
(2)解:不妨设A(1,0,0),
则B(0,1,0),C(-1,0,0),A1(1,0,2),
又AB∩AA1=A,∴BC⊥平面A1AD.
又E(0,0,1),D(0,1,1),C(-1,0,0),
又AE∩ED=E,∴EC⊥平面C1AD.
cos〈
∴二面角A1—AD—C1为60°.